
 

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 1 

Chapter review 6 

1 a d tan e cos
d

xy y x x
x
+ =   

 tan de secx x x∫ =  
dsec sec tan
d

xyx y x x e
x
+ =  

 
sec exy x k= +  

 
e cos cosxy x k x= +  

 
 b at x = π, y = 1 

πe cos π cos π 1k+ =  
π1 e cos π

cos π
k −
=  

( )π1 ek = − +  
Therefore: 

( )
( )

π

π

e cos 1 e cos

e e 1 cos

x

x

y x x

x

= − +

= − −
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2 d 3 sin
d
y y x
x
− =   

3 d 3e ex x− −∫ =  
 
 

3 3

3 3

e 3e sin

e e sin  d

x x

x x

y x

y x x

− −

− −

− =

= ∫
 

 
 

( )

3 3 3

3 3 3

3 3 3

3

e sin  d e cos 3e cos  d

e cos 3 e sin 3e sin

e cos 3e sin 9 e sin  d

1 e 3sin cos
10

x x x

x x x

x x x

x

x x x x x

x x x

x x x x

x x

− − −

− − −

− − −

−

= − −

 = − − − − 

= − − −

= − +

∫ ∫
∫
∫

  

( )

3 3 3 3

3 3

e sin  d e cos 3e sin 9 e sin  d

1e sin  d e 3sin cos
10

x x x x

x x

x x x x x x

x x x x

− − − −

− −

= − − −

= − +

∫ ∫

∫
  

 

( )3 31e e 3sin cos
10

x xy x x A− −= − + +   

( ) 31 3sin cos e
10

xy x x A= − + +  

At x = 0, y = 0 
1 0

10
A− + =  

1
10

A =  

( ) 31 13sin cos e
10 10

xy x x= − + +  
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3 ( )2d 4
d
y x y
x
= −   

2

1 d
4 d

y x
y x

=
−

 

  2

1 d d
4

y x x
y

=
−∫ ∫  

( )( )2

1 1
4 2 2y y y

=
− − +

 

( )( )
1

2 2 2 2
A B

y y y y
= +

− + − +
 

( ) ( )1 2 2A y B y= + + −  
When y = 2 
4A = 1 

1
4

A =   

When y = −2 
4B = 1 

1
4

B =   

Therefore: 

( )( ) ( ) ( )
1 1 1

2 2 4 2 4 2y y y y
= +

− + − +
 

   2

1 1 1 1 1d d d
4 4 2 4 2

y y y
y y y

= +
− − +∫ ∫ ∫  

   
1 1 1 1d d d
4 2 4 2

y y x x
y y

+ =
− +∫ ∫ ∫  

   
1 1d d 4 d

2 2
y y x x

y y
+ =

− +∫ ∫ ∫  

( ) ( ) 2ln 2 ln 2 2y y x c− − + + = +  

22ln 2
2

y x c
y

 +
= + − 

 

2

2

2

2

2

2

2 e
2

e e

e

x c

x c

x

y
y

A

++
=

−

=

=

 

Let 
22e xu A=  

2
2

y u
y

+
=

−
 

( )2 2y u y+ = −  
2 2y u uy+ = −  

2 2uy y u+ = −  

( )2

2

2

2

2 e 1

e 1

x

x

A
y

A

−
=

+
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When x = 0, y = 1 
( )2 1

1
1

A
A
−

=
+

 

1 2 2A A+ = −  
3A =  

Therefore: 

( )2

2

2

2

2 3e 1

3e 1

x

x
y

−
=

+
 

 

4 
2

2

d d 0
d d

y y y
x x

+ + =   
2 1 0m m+ + =  

1 1 4
2

1 3
2

1 3 i
2 2

m − ± −
=

− ± −
=

= − ±

 

1
2 3 3e cos sin

2 2
x

y A x B x
−     

= +            
   

 

5 
2

2

d d12 36 0
d d

y y y
x x

− + =  
2 12 36 0m m− + =  

( )( )6 6 0m m− − =  
m = 6 

( ) 6e xy A Bx= +  
 

6 
2

2

d d4 0
d d

y y
x x

− =  
2 4 0m m− =  
( )4 0m m − =  

m = 0 or m = 4 
 

4e xy A B= +  
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7 
2

2
2

d 0
d

y k y
x

+ =  
2 2 0m k+ =  
2 2m k= −  

im k= ±  
cos siny A kx B kx= +  

d sin cos
d
y kA kx kB kx
x
= − +  

When x = 0, y = 1 and d 1
d
y
x
=  

1A =  
1
1

kB

B
k

=

=
 

1cos siny kx kx
k

= +  

 

8 
2

2

d d2 10 0
d d

y y y
x x

− + =  
2 2 10 0m m− + =  

2 4 40
2

2 36
2

1 3i

m ± −
=

± −
=

= ±

 

( )e cos3 sin 3xy A x B x= +   

( ) ( )d e cos3 sin 3 e 3 sin 3 3 cos3
d

x xy A x B x A x B x
x
= + + − +  

When x = 0, y = 0 and d 3
d
y
x
=  

0A =  
3 3A B+ =  

B = 1 
e sin 3xy x=  
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9 a 
2

2
2

d d4 13 e
d d

xy y y
x x

− + =  (1) 

Let 2e xy k=   
2d 2 e

d
xy k

x
=  

2
2

2

d 4 e
d

xy k
x

=  

Substituting into (1) gives: 
2 2 2 24 e 4(4 e ) 13 e ex x x xk k k− + =  
1k =  

 
Hence the particular integral is 2e x  

 
 b 2 4 13 0m m− + =  

( ) ( )( )24 4 4 1 13
2

4 36
2

2 3i

m
± − −

=

± −
=

= ±

 

Therefore the complementary function is: 
( )2e cos3 sin 3xy A x B x= +   

And the general solution is: 
( )2 2e cos3 sin 3 ex xy A x B x= + +  

 

10 
2

2

d 4e
d

xy y
x

− =  (1) 

Let exy Ax=   
d e e
d

x xy Ax A
x
= +  

2

2

d e 2 e
d

x xy Ax A
x

= +  

Substituting into (1) gives: 
e 2 e e 4ex x x xAx A Ax+ − =  

2A = 4 
A = 2 
Hence the particular integral is 2 exx  

2 1 0m − =  
m = ±1 
Therefore the complementary function is: 

e ex xy A B −= +   
And the general solution is: 

e e 2 ex x xy A B x−= + +  
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11 a 
2

2
2

d d4 4 4e
d d

xy y y
x x

− + =    (1) 
2 4 4 0m m− + =  

( )( )2 2 0m m− − =  
m = 2 
Therefore the complementary function is: 

( ) 2e xy A Bx= +   
 
 b Let 2e xy λ=   

2d 2 e
d

xy
x

λ=  

2
2

2

d 4 e
d

xy
x

λ=  

Substituting into (1) gives: 
2 2 2 24 e 8 e 4 e 4ex x x xλ λ λ− + =  

20 4e x=  
This is not possible, therefore 2e xλ cannot be the particular integral. 
Let 2e xy xλ=   

2 2d 2 e e
d

x xy x
x

λ λ= +  

2
2 2 2

2

2 2

d 4 e 2 e 2 e
d

4 e 4 e

x x x

x x

y x
x

x

λ λ λ

λ λ

= + +

= +

 

Substituting into (1) gives: 
( )2 2 2 2 2 24 e 4 e 4 2 e e 4 e 4ex x x x x xx x xλ λ λ λ λ+ − + + =  

2 2 2 2 2 24 e 4 e 8 e 4 e 4 e 4ex x x x x xx x xλ λ λ λ λ+ − − + =  
20 4e x=  

This is not possible, therefore 2e xxλ cannot be the particular integral. 
 
 c Let 2 2e xy kx=   

2 2 2d 2 e 2 e
d

x xy kx kx
x
= +  

2
2 2 2 2

2

d 4 e 8 e 2 e
d

x x xy kx kx k
x

= + +  

Substituting into (1) gives: 
( )2 2 2 2 2 2 2 2 2 24 e 8 e 2 e 4 2 e 2 e 4 e 4ex x x x x x xkx kx k kx kx kx+ + − + + =  

2 2 2 2 2 2 2 2 2 24 e 8 e 2 e 8 e 8 e 4 e 4ex x x x x x xkx kx k kx kx kx+ + − − + =  
 
Comparing coefficients for constant terms: 
2k = 4 
k = 2 
 Hence the particular integral is 2 22 e xx  
Aand the general solution is: 

( )
( )

2 2 2

2 2

e 2 e

2 e

x x

x

y A Bx x

A Bx x

= + +

= + +
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12 
2

2

d 4 5cos3
d

y y t
t

+ =   (1) 

Let cos3 sin 3y A t B t= +   
d 3 sin 3 3 cos3
d
y A t B t
t
= − +  

2

2

d 9 cos3 9 sin 3
d

y A t B t
t

= − −  

Substituting into (1) gives: 
( )9 cos3 9 sin 3 4 cos3 sin 3 5cos3A t B t A t B t t− − + + =  

9 cos3 9 sin 3 4 cos3 4 sin 3 5cos3A t B t A t B t t− − + + =  
5 cos3 5 sin 3 5cos3A t B t t− − =  

Comparing coefficients: 
For cos 3t: 

5 5A− =  
A = −1 
For sin 3t: 

5 0B− =  
B = 0 
Hence the particular integral is cos3t−  

2 4 0m + =  
m = ±2i 
Therefore the complementary function is: 

cos 2 sin 2y A t B t= +   
And the general solution is: 

cos 2 sin 2 cos3y A t B t t= + −  
d 2 sin 2 2 cos 2 3sin 3
d
y A t B t t
t
= − + +  

When t = 0, y = 1 and d 2
d
y
t
=  

1A =  
B = 1 
Therefore the particular solution is: 

cos 2 sin 2 cos3y t t t= + −  
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13 a 
2

2
2

d d3 2 4 e
d d

xy y y x
x x

− + = +  (1) 

Let 2e xy x kxλ µ= + +   
2 2d 2 e e

d
x xy kx k

x
µ= + +  

2
2 2 2

2

2 2

d 4 e 2 e 2 e
d

4 e 4 e

x x x

x x

y kx k k
x

kx k

= + +

= +

 

Substituting into (1) gives: 
( ) ( )2 2 2 2 2 24 e 4 e 3 2 e e 2 e 4 ex x x x x xkx k kx k x kx xµ λ µ+ − + + + + + = +  

2 2 2 2 2 24 e 4 e 3 6 e 3 e 2 2 2 e 4 ex x x x x xkx k kx k x kx xµ λ µ+ − − − + + + = +  
2 2e 3 2 2 4 ex xk x xµ λ µ− + + = +  

Comparing coefficients: 
For 2e x : 
k = 1 
For x: 
2 4µ =  

2µ =  
For constant terms: 

3 2 0µ λ− + =  
6 2 0λ− + =  

3λ =  
Hence the particular integral is 23 2 e xx x+ +  

 
 b 2 3 2 0m m− + =  

( )( )1 2 0m m− − =  
m = 1 or m = 2 
Therefore the complementary function is: 

2e ex xy A B= +   
And the general solution is: 

2 2e e e 2 3x x xy A B x x= + + + +  
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14 a 
2

2

d d16 8 5 5 23
d d

y y y x
x x

+ + = +   (1) 

Let y Ax B= +   
d
d
y A
x
=  

2

2

d 0
d

y
x

=  

Substituting into (1) gives: 
8 5( ) 5 23A Ax B x+ + = +  
8 5 5 5 23A Ax B x+ + = +  
Comparing coefficients: 
For x: 
5 5 1A A= ⇒ =  
 
A = 1 
For constant terms: 
8 5 23 3A B B+ = ⇒ =  

3B =  
 
Hence the particular integral is 3x +  
 216 8 5 0m m+ + =  

( )( )
( )

28 8 4 16 5
2 16

8 256
32

8 16i
32

1 1 i
4 2

m
− ± −

=

− ± −
=

− ±
=

= − ±

 

Therefore the complementary function is: 
1
4 1 1e cos sin

2 2
x

y A x B x
−     = +        

  

And the general solution is: 
1
4 1 1e cos sin 3

2 2
x

y A x B x x
−     = + + +        

 

1 1
4 4d 1 1 1 1 1 1 1e sin cos e cos sin 1

d 2 2 2 2 4 2 2
x xy A x B x A x B x

x
− −          = − + − + +                    

 

When x = 0, y = 3 and d 3
d
y
x
=  

A + 3 = 3 
A = 0 
1 1 1 3
2 4

B A− + =  

B = 4 
Therefore the particular solution is: 
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1
4 14e sin 3

2
x

y x x
−  = + + 

 
 

 

 b As x → ∞, 
1
4 14e sin

2
x

x
−  

 
 

→ 0 so y → x + 3 

15 
2

2

d d 6 3sin 3 2cos3
d d

y y y x x
x x

− − = −  (1) 

 Let cos3 sin 3A x B x+   

 d 3 sin 3 3 cos3
d
y A x B x
x
= − +  

 
2

2

d 9 cos3 9 sin 3
d

y A x B x
x

= − −  

 Substituting into (1) gives: 
 9 cos3 9 sin 3 3 sin 3 3 cos3 6 cos3 6 sin 3 3sin 3 2cos3A x B x A x B x A x B x x x− − + − − − = −  
 15 cos3 15 sin 3 3 sin 3 3 cos3 3sin 3 2cos3A x B x A x B x x x− − + − = −   
 ( ) ( )cos3 15 3 sin 3 3 15 3sin 3 2cos3x A B x A B x x− − + − = −  
 Comparing coefficients: 
 For cos 3x: 

 
 15 3 2A B− − = −   (1) 
 For sin 3x: 
 3 15 3A B− =  (2) 
 Adding (1) and 5 × (2) gives: 
 78 13B− =  

 1
6

B = −  

 1
6

A =  

 Hence the particular integral is 1 1cos3 sin 3
6 6

x x−  

 2 6 0m m− − =  
 ( )( )2 3 0m m+ − =   
 m = −2 or m = 3 
 Therefore the complementary function is: 
 3 2e ex xy A B −= +   
 And the general solution is: 

 3 2 1 1e e cos3 sin 3
6 6

x xy A B x x−= + + −  

 If y(x) remains finite as x → ∞ then A = 0 
 Therefore: 

 2 1 1e cos3 sin 3
6 6

xy B x x−= + −  

 When x = 0, y = 1  

 11
6

B= +  

 5
6

B =  

 Therefore the particular solution is: 
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 ( )21 5e cos3 sin 3
6

xy x x−= + −  
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16 a 
2

2

d d8 16 cos 4
d d

x x x t
t t
+ + = , t ≥ 0  (1) 

Let cos 4 sin 4x A t B t= +   
d 4 sin 4 4 cos 4
d
x A t B t
t
= − +  

2

2

d 16 cos 4 16 sin 4
d

x A t B t
t

= − −  

Substituting into (1) gives: 
( ) ( )16 cos 4 16 sin 4 8 4 sin 4 4 cos 4 16 cos 4 sin 4 cos 4A t B t A t B t A t B t t− − + − + + + =  

16 cos 4 16 sin 4 32 sin 4 32 cos 4 16 cos 4 16 sin 4 cos 4A t B t A t B t A t B t t− − − + + + =  
32 sin 4 32 cos 4 cos 4A t B t t− + =  

Comparing coefficients: 
For cos 4t: 
32 1B =  

1
32

B =  

For sin 4t: 
32 0A− =  

A = 0 

Hence the particular integral is 1 sin 4
32

t  
2 8 16 0m m+ + =  

( )( )4 4 0m m+ + =  
m = −4 
Therefore the complementary function is: 

( ) 4e tx A Bt −= +   
And the general solution is: 

( ) 4 1e sin 4
32

tx A Bt t−= + +  
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16 b ( ) 4 1e sin 4
32

tx A Bt t−= + +  

( ) 4 4d 14 e e cos 4
d 8

t tx A Bt B t
t

− −= − + + +  

When t = 0, 1
2

x =  and d 0
d
y
t
=  

1
2

A =  

14 0
8

A B− + + =  

15
8

B =  

Therefore the particular solution is: 

( ) 41 14 15 e sin 4
8 32

tx t t−= + +  

 

 c As t → ∞ the 4e t−  dominates the first term so ( ) 41 4 15 e
8

tt −+ → 0 leaving: 

  1 sin 4
32

x t=  which is an oscillation. 
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17 a Let 
de , then e
d

u uxx
u

= =  

  

2 2

2 2

2
2

2

2 2
2

2 2

d d d d dand e
d d d d d

d d d d d
d d dd d

d d
d d

d d d d4 2 ln 3 2 ln
d dd d

uy y x y yx
u x u x x
y x y y xx

u x uu x
y yx x
x x

y y y yx x y x y x u
x ux u

= × = =

= × + ×

= +

∴ + + = ⇒ + + = = *

 

  
 The auxiliary equation is  

  

2 3 2 0
( 2)( 1) 0

1 or 2

m m
m m

m

+ + =
∴ + + =
⇒ = − −

 

  ∴The c.f. is 2e eu uy A B− −= +
 

  Let the p.i. be 
2

2
d dλ λ, 0
d d

y yy u μ
u u

= + ⇒ = =  

  Substitute into * 
  3λ 2λ 2u μ u∴ + + =  
  Equate coefficients of u: 1

22λ 1 λ= ⇒ =  
    constants: 3

43λ 2 0μ μ+ = ∴ = −  
  ∴ The p.i. is 31

2 4y u= −  
  The general solution is 2 31

2 4e eu uy A B u− −= + + −  
  But e lnux u x= → =  

  Also 1 2 2
2

1 1e and eu ux x
x x

− − − −= = = =  

  ∴The general solution of the original equation is 2
1 3ln
2 4

A By x
x x

= + + −  

  

Find d
d

y
u

 in terms of x and d ,
d
y
x

 and 

show that 
2 2

2
2 2

d d d
dd d

y y yx x
xu x

= + then 

substitute into the differential equation. 
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17 b But 1 when 1y x= =  

  3 7
4 41 A B A B∴ = + − ⇒ + = (1)  

   2 3
d 2 1
d 2
y A B
x x x x
= − − +  

  When 
d1, 1
d
yx
x

= =  

  1 1
2 21 2 2A B A B∴ = − − + ⇒ + = − (2)  

  Solve the simultaneous equations (1) and (2) to give 9
4 and 4B A= − =  

  ∴ The equation of the solution curve described is 2
4 9 1 3ln

4 2 4
y x

x x
= − + −

 
  

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed



 

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 17 

18  
d d dsin cos and cos
d d d

z y yz x x x
x x z

= ∴ = = ×  

    

2 2

2 2

2
2

2

d d d dsin cos
d d d d

d dsin cos
d d

y y y zx x
x z z x

y yx x
z z

∴ = − + ×

= − +

 

  

2
2 2 sin

2

2
2 2 2

2

2

2

d dtan cos cos e
dd

d d dcos sin tan cos cos cos e
d dd

d e
d

x

z

z

y yx y x x
xx

y y yx x x x y x x
z zz

y y
z

∴ + + =

⇒ − + + =

⇒ + =

†

*

 

  The auxiliary equation is 2 1 0 im m+ = ⇒ = ±  

  ∴ The c.f. is cos siny A z B z= +  

   The p.i. is 
2

2
d dλe λe and λe
d d

z z zy yy
z z

= ⇒ = =  

  Substitute in * to give 

   1
22λe e λz z= ⇒ =  

  ∴ The general solution of * is 1
2cos sin ezy A z B z= + +  

  The original equation †  has solution 

   sin1
2cos(sin ) sin (sin ) e xy A x B x= + +  

  But 1 when 0y x= =  

  1 1
2 21 A A∴ = + ⇒ =  

  sin1
2

d cos ( sin (sin )) cos ( cos (sin )) cos e
d

xy x A x x B x x
x
= − + +  

  As d 3 when 0
d
y x
x
= =  

  
51

2 2
sin51 1

2 2 2

3

cos (sin ) sin (sin ) e x

B B

y x x

∴ = + ⇒ =

∴ = + +
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Challenge 
 

1 a Given that d d, and so and
d d
y zz y y z z
x x

1 1
2 2−2 1

= = =
2

 

  The equation d( ) becomes
d
yx xy
x y

2 1
2 1+ + 2 =  

  d( )
d

zx z x z z
x

1 1 1
2 2 2− −2 1

2 1+ × + 2 =
2

 

  Multiply the equation by z
x

1
2

21+
 

  Then d
d 1

z x z
x x x2 2

2 1
+ =
1+ +

 

  The integrating factor is 
d In( )e e

x x xx x
22

2
1+ 21+∫ = =1+  

  

2

2

2

2

d(1 ) 2 1
d

d [(1 ) ] 1
d

(1 ) 1 d

(1 )

zx xz
x

x z
x

x z x

x c
x cz

x

∴ + + =

∴ + =

∴ + =

= +
+

∴ =
+

∫  

  As ,
( )

x cy z y
x

1
2

2

+
= =

1+  

 
 b When , 4x y c c= 0 = 2 ∴ 2 = ⇒ =  

      xy
x2

+ 4
∴ =

1+
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2 a d d d
d d d
y y u
x u x
=  

  

2

2

2 2

2 2

22 2

2 2

d d d d
d d d d

d d d d d
d d d d d

d d d d
d d d d

y y u
x x u x

y u u y u
u x x u x

y u u y
u x x u

 =  
 

 
= +  

 

 = +  
 

 

Let x = eu, therefore: 
 u = ln x 
d 1
d

e u

u
x x

−

=

=

 

2
2

2

2

d
d

e u

u x
x

−

−

= −

= −

 

The original equation is: 
2

2
2

d d4 2 ln
d d

y yx x y x
x x

+ + =  

The transformed equation is: 

( )
2

2 2 2
2

d d de e e 4e e 2
d d d

u u u u uy y y y u
u u u

− − −   − + + + =     
 

2

2

d d d4 2
d d d

y y y y u
u u u

− + + + =  

2

2

d d3 2
d d

y y y u
u u

+ + =  (1) 

Let y Au B= +   
d
d

y A
u
=  

2

2

d 0
d

y
u

=  

Substituting into (1) gives: 
3 2( )A Au B u+ + =  
 
Comparing coefficients: 
For u: 
2 1A =  

1
2

A =   

 
For constant terms: 
3 2 0A B+ =  
3 2 0
2

B+ =  

3
4

B = −  
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Hence the particular integral is 1 3
2 4

u −  

2

2

d d3 2
d d

y y y u
u u

+ + =  
2 3 2 0m m+ + =   

( )( )1 2 0m m+ + =   
m = −1 or m = −2 
Therefore the complementary function is: 

2e eu uy A B− −= +   
And the general solution is: 

2 1 3e e
2 4

u uy A B u− −= + + −  

Therefore: 

2

1 3ln
2 4

A By x
x x

= + + −  

 

2 b 2

1 3ln
2 4

A By x
x x

= + + −  

2 3

d 2 1
d 2
y A B
x x x x
= − − +  

When x = 1, y = 1 and d 1
d
y
x
=  

3 1
4

A B+ − =  

7
4

A B+ =  (2) 

12 1
2

A B− − + =  

12
2

A B− − =  (3) 

Adding (2) and (3) gives: 
9
4

B = −  

7
4

A B+ =  

9 7
4 4

A− =  

A = 4 
Therefore the particular solution is: 

2

4 9 1 3ln
4 2 4

y x
x x

= + − + −  

 

3 Substitute dyu
dx

=  so equation becomes 
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2

2

d
d

d d

1

d 1
d

ln( )  
ln( ) as required.

u u
x

u x
u

x B
u
y
x x B

y x B A
A x B

=

⇒ =

⇒ − = +

⇒ = −
+

⇒ = − + +
= − +

∫ ∫
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